
Leaning Objective:

 In this Module you will be learning the following:

 Graph Traversals

Introduction:

In computer science, graph traversal (also known as graph search) refers to the process of visiting

(checking and/or updating) each vertex in a graph.

Material:

Graph traversal is technique used for searching a vertex in a graph. The graph traversal is also used to

decide the order of vertices to be visit in the search process. A graph traversal finds the edges to be

used in the search process without creating loops that means using graph traversal we visit all vertices

of graph without getting into looping path.

There are two graph traversal techniques and they are as follows...

1. DFS (Depth First Search)

2. BFS (Breadth First Search)

DFS (Depth First Search)

Depth First Search or traversal explores a given graph depth wise, that means we go down the graph

from one node to another till there is no unexplored node down. Once we reach the end of a path going

down, backtracking starts and parent of current node is looked for any other unexplored child nodes,

and so on.

For above graph depth first search will be 1->6->5->2->3->4

Depth First Search Algorithm

1. Start with a node S, and mark it as visited.

2. Current node u = S

3. While there is edge to be explored

 3.1 Move to v where there is an edge (u,v).

 3.2 If v is already not visited, mark v as visited

 3.3 change u to v and repeat.

4. Move to parent of u.

Recursive implementation of above algorithm of depth first search on graph is very simple as shown

below

1 procedure DFS(G,v):

2 label v as discovered

3 for all edges from v to w in G.adjacentEdges(v) do

4 if vertex w is not labeled as discovered then

5 recursively call DFS(G,w)

Iterative implementation of depth first search

1 procedure DFS-iterative(G,v):

2 let S be a stack

3 S.push(v)

4 while S is not empty

5 v = S.pop()

6 if v is not labeled as discovered:

7 label v as discovered

8 for all edges from v to w in G.adjacentEdges(v) do

9 S.push(w)

Below figure explains how iterative depth first traversal works using stacks.

Applications of depth first search

 Minimum spanning tree

 To check if graph has a cycle.

 Topological sorting

 To find strongly connected components of graph

 To find bridges in graph

Breadth First Search

First of all, what is breadth first search? In BFS, all neighbors of a node are visited before any of neighbor

of those neighbors. Basically, we traverse graph layer by layer. For example, BFS of below graph would

be 1->2->6->3->5->4

In depth first search, we go deep into the graph till there is not

further move possible and then backtrack and again do the same

process with another neighbor of parent and so on till we don’t

have any further node to visit.

In breadth first search, as we traverse layer by layer, there is no

backtracking required. Before reaching to layer i, all the nodes

till layer i-1 would have been already visited.

Start from node S. Let S be node u. Mark it as visited. Visit all

nodes which are at one edge distance from u. Once all nodes are

visited, make each neighbor node as u one by one and repeat

above steps till the time there is some unexplored edges. Below

figure explains step by step how BFS done.

Implementation wise, BFS uses queue unlike DFS which uses stack. While processing node, all neighbors

of that node are enqueued in queue and processed one after the other in FIFO order. This ensures that

all nodes at same level are processed before next level is started.

Breadth-First-Search(Graph,root):

 for each node u in Graph:

 create empty queue Q

 Q.enqueue(root)

 while Q is not empty:

 current=Q.dequeue()

 print current->value

 visited[v] = true

 for each v that is adjacent to current and not visited

 Q.enqueue(v)

Below figure explains how breadth first implementation works

Applications of BFS

1. To find shortest path between two nodes u and v in an unweighted graph.

2. In Peer to Peer Networks like BitTorrent, Breadth First Search is used to find all neighbor nodes.

3. Search engine crawlers, each page leads to more pages linked to current page and so on.

4. Social networks, BFS is used to find degree of separation, friends within K distance etc.

5. Broadcasting protocol in networks uses BFS to broadcast packets to all neighboring devices.

6. To test bipartite-ness of a graph

7. To find all nodes within one connected component of graph.

Complexity of Breadth First Search is O(|V| +|E|) where V is number of vertices in graph and E is

number of edges in graph.

http://algorithmsandme.in/2016/10/find-degree-of-separation/

Problems Sets:

1. Write a C program to implement the DFS using List/Adjacency Matrix representation?

2. Write a C program to implement the BFS using List/Adjacency Matrix representation?

3. Write a C program to implement the Topological Sorting?

